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A derivation of the frequency-dependent relaxation time in a simple model of metal, composed of elec­
trons and phonons, is presented. The problem is investigated by a quantum-kinetic description of the re­
sponse of the electron-phonon system to an oscillating electric field. The treatment, which stems from a 
proper time-dependent transport equation, does not have the time scale restriction of the usual transition 
probability approach, and does give a proper description of the time-dependent collective effects. 

I. INTRODUCTION 

IN the present paper we are concerned with the 
problem of calculating the frequency-dependent 

conductivity and relaxation time of a simplified model 
of a metal, composed of electrons and phonons, on the 
basis of a kinetic approach. The problem of electrical 
conductivity is usually treated using transport equa­
tions for the distribution function, / , under the provision 
that the rate of change of / due to the acceleration by a 
time-independent uniform electric field is balanced by the 
rate of change due to collisions.1"3 Adopting from the 
classical theory of gases, the conductivity a is given by 

(Td—ne2T/m, (i) 

in terms of a characteristic relaxation time, r, which is 
calculated, in one way or another, using the transport 
equation. In Eq. (1) m and —e represent, respectively, 
the mass and charge of an electron, and n is the average 
density of the electrons. In the case of time-dependent 
fields, oscillating with the frequency a?, it is argued, after 
Drude,4 that one can replace Eq. (1) by 

o-(a>) = 
vern 

m(o)+i/r) 
(2) 

where, now, r is generally frequency-dependent. Equa­
tion (2) is often introduced in discussing the interaction 
of electromagnetic waves with metals, especially in the 
infrared region, where o>r is greater than, or of order of, 
one. In order to find r(co), one is not entitled to employ 
the static transport equation mentioned above, but has 
to search for a time-dependent method. The use of the 
conventional transport theory involves Dirac's time-
dependent perturbation method, and the concept of 
transition probability is introduced under the assumption 
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that the collision frequency is the largest one under 
consideration. It is clear that this assumption does not 
hold for the present problem. 

Some attention was paid to this problem in the last 
decade. Holstein5 calculated the volume absorption of 
electromagnetic waves (in the infrared region) by em­
ploying a time-dependent perturbation theory. Ginzburg 
and Silin6 considered the frequency-dependent con­
ductivity, but assumed r to be independent of fre­
quency. Gurzhi7 studied the proper transport equation 
to be used for the problem, but failed to obtain r(w). In 
a recent series of papers, Ehrenreich8 and his collabora­
tors studied the optical properties of solids using (for the 
few eV range) an equation like (2) without specifying 
r(o>). 

Here we shall investigate the frequency-dependent 
relaxation time, starting from the Hamiltonian of 
Bardeen and Pines9 for a simplified model of metal, 
composed of electrons and phonons. Using this Hamil­
tonian a "self-consistent" type of kinetic equation is 
formulated to describe the response of the electrons both 
to the field and to the phonons. The solution of this 
equation is accomplished by applying a method recently 
developed by Oberman10 for the study of classical sys­
tems (see also Dawson and Oberman11 for similar ap­
proach). We thus obtain a closed form for the con­
ductivity due to the electron-phonon interaction, taking 
into account properly the collective aspects of the 
electron-electron interaction. We restrict our treatment 
to intraband transitions only. 

II. THE GENERAL FORMALISM 

Following Bardeen and Pines,9 we assume a mono-
atomic crystal of n ions and n valence electrons per unit 
volume. We introduce phonon coordinates to represent 
the ion motion, and second quantization representation 

8 T . Holstein, Phys. Rev. 96, 535 (1954). 
6 V. L. Ginzburg and V. P. Silin, Zh. Eksperim. i Teor. Fiz. 29, 

64 (1955) [translation: Soviet Phys.—JETP 2, 46 (1956)]. 
7 R. N. Gurzhi, Zh. Eksperim. i Teor. Fiz. 33, 451, 660 (1957) 

[translation: Soviet Phys.—JETP 6, 352, 506 (1958)]. 
8 H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962). 
9 J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955). See also 

J. Bardeen, in Encyclopedia of Physics, edited by S. Flugge 
(Springer-Verlag, Berlin, 1956), Vol. 15. 

10 C. Oberman, private communication (to be published). See 
also'JH. Berk, Ph.D. thesis, Princeton University, 1963 (un­
published). 

11 J. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962) 

2041 



2042 A M I R A M R O N 

for the electrons. The phonons are assumed to be either 
longitudinal or transverse, and only the longitudinal 
phonons interact with the electrons (long-wavelength 
region). Creation and annihilation operators, a^ and ap, 
are denned so that they create (annihilate) an electron 
in the state p,12 with the Bloch function \{/v, and obey the 
usual anticommutation relations. The Bloch equation is 

1 d2 

2m dr2 
-+V(r) k = E(p)* P , (3) 

where V(r) stands for the effective potential due to the 
equilibrium position of the ions compensated by a uni­
form negative charge. An extended zone scheme is to be 
used, and the p's are obtained by the usual boundary 
conditions. The Hamiltonian for the electrons is 

He=E EfrWot+i E ' * (* )p (k )p ( -k ) , (4) 
P k 

where 

- / 
4>{k)= / drdr'^p+k(r)i/y(r)-

J |r— r ' | 

and, the density operator, 

p(k) = E ^p+kflp. 

-Vy+k(r)iMr), (5) 

(6) 

In the spirit of B loch's theory we assume that <j>(k) 
depends on the absolute value of the wave vector differ­
ence between initial and final states. For free electrons 
0(&) = 47re2/&2. 

The longitudinal phonons are represented by the 
Hamiltonian 

#Ph=i E P**P*+Q**Q**Q*, (7) 
k(zone) 

where Q^ and Pk are the conjugate normal coordinates 
and momenta, respectively, for phonons in the k state 
obeying the usual commutation relations, and Ok

2 is 
determined solely by the ion-ion interactions (in the 
negative background). The summation is restricted to 
the first Brilliouin zone for the phonons where <2k and 
Pk are defined. 

The interaction between the electrons and the phonons 
is represented by the Hamiltonian 

# in t=Ef lk<2kp(-k) , 
k 

(8) 

where we take 

Vk= — (nM) 
- " • / " P+k 

X 

(r) 

d 
E e * ~ v ( r - R y ) c * k - ^ " L p ( r ) (9) 

L / dr J 

to be the matrix element of the interaction, and to de­
pend only on the wave vector difference between the 
initial and final states of the electron. We also have 
z>k*=fl-k. The sum over k in Eq. (8) extends over all 
values, while Qk refers to the reduced vector in the first 
zone. This amounts to the inclusion of Peierls-Umklapp 
processes. In Eq. (9) M is the ion mass, £& is a unit 
vector in the k direction, and fl(r-Ry) is the effective 
potential of interaction between an electron in position r 
and an ion in equilibrium position Ry. The total 
Hamiltonian is now 

H==He-\-Hv}1-{-Hint, (10) 

with the irrelevant parts (e.g., the transverse phonons) 
left out. We also choose our units so that ft= 1. 

In order to obtain a self-consistent set of equations, 
we introduce the density matrix operator, p, for a single 
electron, p obeys the equation13 

«p /d*=[3e ,p ] , (11) 

where 3C is the effective self-consistent Hamiltonian for 
an electron. In addition to the self-consistent field, there 
is present a prevailing spatially uniform electric field E, 
oscillating in time at the frequency w. For any operator 
A, we define 

(12) (P 'MIPH di^*(t)AM')-

The equation of motion for p is then given by 

\t(d/dt)+E(p) - £ ( p + k ) ] ( p + k | p | p) 

= ?(e/OTco)E(w)-k(p+k|p|p)e- i '"+EC*(k')+^'<2k'] 

where 
X [ < P + k - k ' | p | p ) - < p + k | p | p + k ' > ] , (13) 

* ( k ) = * ( * ) £ < P + k | p | p > - (14) 

The equation of motion of Q& is 

d2 

— C k + ^ 2 Q k = -Sflk* E (P+kIPIP) , (15) 
dt2

 P 

where the S stands for the sum over all k, which corre­
sponds to this same reduced wave vector, so that 
umklapp processes may be included. 

We are concerned here with the solution of Eqs. (13)-
(15), under the assumption that the phonons do not 
respond directly to the field. That is to say, the induced 
current is due only to the electron motion, and is given 
by 

j(») = jo(»)+j i (») , (16) 
where 

e2n 1 
jo(«) = *— -E(co) (17) 

m co 
12 We do not introduce spin coordinates because they do not 
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is the current for noninteracting electrons, and 

ji(co) = - (e / f»)Ep<P|p |p> (18) 
p 

comes from the solution of Eqs. (13)—(IS), neglecting 
the direct effects of the periodicity on the current. 

We wish to point out that Eq. (13) is a good ap­
proximation for frequencies above the electron-electron 
collision frequency (which may be a few orders of 
magnitude smaller than the electron-phonon collision 
frequency), where one may systematically neglect the 
electron-electron correlation (including their exchange 
effects). Thus, our results are only applicable in the 
limit w r > l . 

III. THE APPROXIMATION METHOD 

Adopting Oberman's procedure10 we solve Eqs. (13)-
(15) in four steps. 
f- (A) The equilibrium solution of Eq. (13), without 
taking the phonons and the field into account, is 

<P+k |pa |p)=5k,o /o[£(p) ]=/p , (19) 

where / p is the Fermi distribution function 

/ p = { e x p / 3 [ E ( p ) - i u ] + l } - 1 . (20) 

In Eq. (20), /5 is the inverse temperature in energy units 
and ix is the chemical potential of the electrons. 

(B) We now incorporate the phonons into Eq. (13) 
and linearize the equation around the equilibrium solu­
tion, Eq. (20), to obtain 

Li(d/dt)+E(p)~E(p+k)Jp+k\Pb\p) 
= [ ^ 6 ( k ) + , k e k ] { / p - / p + k } , (21) 

with 
*»(k) = ^(A)E<P+k|p» |p>, (22) 

and 
*\2 

—Q*+Qi?Q*= -Sflk* E <P+k|P 6 |p>. (23) 
dt2

 P 

Equations (21)-(23) constitute a self-consistent set of 
equations for the coupled motion of the electrons and 
lattice waves in the system. 

To obtain the steady-state solution of Eqs. (21)-(23), 
we first perform a Fourier transformation. Then we 
solve for the electron density 

nb(k,a>) = ^ (p+k\Pb\p) 

vk 1 — e(k,ca) 

in terms of Qk(«). In Eq. (24), 

/ p + k ~ / p 
€(*,*>) = W ( f t ) £ 

P E(p+k)—E(p) —co—ie 

(24) 

(25) 

is the dielectric function for the electrons. We now 
substitute Eq. (24) into Eq. (23) and find 

. , 2 1 —e(*,«)l 
- u 2 - W + S — — — [<2k(o0 = 0. (26) 

4>(k) €(*,«) 

Thus, the "real" frequencies o)k of the k phonons are 
given by the equation 

co/c2 = ^ 2 + S -
vk\

2 l — e(k,a)k) 

<j>(k) e(k,o>k) 
(27) 

Equation (27) is the well known dispersion relation for 
the phonons, and was derived by Nakajima (see Ref. 9, 
Bardeen-Pines) by a method of canonical transforma­
tion. Noticing that o)k<10~AEF, where EF is the Fermi 
energy, Eq. (27) is reduced to 

(jok
2 = &k2-

M2i-€(ft,o) 
(28) 

similar to the result of Bardeen.14 In the plasma model 
for the metal, the dielectric function is given by 

where 
e(k,0)~l+K2/k2, 

K2=(4:fn/<jrh)(vF/a) 

(29) 

(30) 

is the square of the inverse shielding radius, a= h2/me2 is 
the Bohr radius, and vp is Fermi velocity. Also 

and 

and, thus, 

^^^^eHIM 

vk^~i(4,7re2/k)(n/M)1/2 

cok=ck, 

with cy the sound velocity, given by 

c2=tip
2/K2=(m,/3M)vF

2. 

(31) 

(32) 

(33) 

(33a) 

This result was obtained first by Bohm and Staver.15 

In the preceding paragraph we were able to derive the 
spectrum of the phonons, but the amplitudes of the 
Qk(uk) are not defined by Eqs. (21)—(23). However, for 
the time being, we shall assume Qk(o>k) to be given. I t is 
now convenient to introduce the creation and annihila­
tion operators for the phonons by the equation 

Q^(2a>k)-U
2[bk+b^-], (34) 

and, thus, the time dependence of ()k is readily given by 

Qk(0= (2o^k)-
1/2{bke-i^t+b-^ei^t} , (35) 

where o)k is the "positive" solution of Eq. (27). 

14 J. Bardeen, Phys. Rev. 52, 688 (1937). 
" D. Bohm and T. Staver, Phys. Rev. 84, 836 (1952) and T. 
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Going back to Eq. (21) we obtain e 
=— E C*(-K, 0+»k*0k wjk 

vk r l - e (* ,«») » k 

m(k,t)= bar** X Z < P + k | p | p > - (42) 

1 -e* (£,«*) 1 Making use of the fact that $ ( - k ) = <i>(k), Eq. (42) 

«(k,m) 

K x • .1 /o^\ M a k i n g u! 
- A - k t e » . « | , (36) r e d u c e s

g
t 0 

where use has been made of the property j—i/fi — l . y ; t__^__rjktg»«*<-(-j_ke-<«»n 

X E ( p + k | p | p ) - (43) «(*,-„) = e * ( M . (37) d< w k ^ fc )1 /2 

Consequently, the time-dependent (p+k|Pb\v) reads p 

( p + k | pb(t) | p) The coherent part of the current induced by the E field 
r r is given by 

'2LeOU (2co*)1 /2Le(^) £ ( p + k ) - £ ( p ) - c o * - * e «ij(w)<r»«« = — £ k-

1 /p+k— /p 

€*(*,«*) E ( p + k ) ~ - E ( p ) + a ) , - ^ e 

w k (2a>&)1/2 

•J_kV«*M. (38) X [ W e t o * 4 - i - k ^ - * * > o ( k , 0 , (44) 

where wc(k,0 comes from Eq. (41), and, thus, 

l|(ftkt*k+i 
CO —C0fc)J) 

I ) . (45) 

(C) In the third step we find the response of the 
electrons to the local prevailing E field. This is ac- e2 |z>k|2 [[" 1 * 1 
complished by rewriting Eq. (13) as h(w) = * * — E kk-E ^ , , J "77— : + ~77 ,—: 

p ( 9 / ^ ) + £ ( p ) - £ ( p + k ) ] ( p + k | P c | p ) 
+ $ c ( k ) [ / p + k - / p ] 

= i(e/mo})E'k(p+k\pb(t)\v)e-™t, (39) Le(£, co+co*) e(*, co-co*) 
and 

* e (k) = * ( * ) £ <p+k|P e |p> = *(ft)»e(k). (40) I n t h e derivation of Eq. (45) we have used the properly 
p symmetrized form of Eq. (44) and the commutation 

relations of the 6k's. 
Noticing that Eq. (36) is driven by the frequencies 
w+cofc and co—cofc, we obtain IV. THE CONDUCTIVITY AND THE 

RELAXATION TIME 
e Vk 1 

wc(k,/) = £ ( p + k | p c ( 0 | p ) = ^ k*E(o>) So far we have calculated the response of the system 
P mo2 <j>{k) (2a)k)lf2 to the E field and to the phonons motion. However, for 

the calculation of the frequency-dependent conductivity 
w J r I 1 i(o>+(l}k) t we have to specify the phonon spectrum. Here we shall 

1 Le(k,o)k) e(k o)+o)k)j assume, following Bloch, that the phonon system may 
be treated as if it were in thermal equilibrium. Thus, the 

f 1 1 "1 1 ensemble average of the current of Eq. (45) is given in 
+bJ Lr*<—*>« , (41) t e r m S 0 f 

Le*(&,co/b) e(k,od—a>k)-i J 
< J k t i k > = { ^ * ~ l } - 1 , (46) where ne(k,t) is the response of the electron density to 

both the field E and the phonons motion. and, consequently, 
(D) The last step is the current calculation. To com- /» t/, \_i_i — i ™+K(R,, /9^ (A.n\ ; ; , r , . -, -, , ,, r I-, , , ^k^k)-h2~-2 cotn^cofc/ij. (4/j 

pute the average current induced by the field we take 
Eq. (13) for k = 0 , multiply it by — (e/m)p, and sum The conductivity, crfa), is defined by the equation 
over all p. If we neglect all the direct effects of the 
periodicity, but still consider the electron-phonon J(CO)=OT(W)E(OJ). (48) 
umklapp processes, we obtain Tr _ /An. . ,._.. 

If we employ Eqs. (18) and (45) we can write 
s 

* H i W ^ L C*(k,0+»k6k(0] «r(«) = <ro(o))[l- (2^/3TTW<O2)F(CO)], (49) 
dt k 

( e \ where 

— P ) { < p - k ' | P | p > - < p | P | p + k ' » 
w / ao=i{eln/mo)) (50) 

file:///_i_i
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is the conductivity for free electrons, and 

P* 

1*1 e%4>(&)l 

r l 
e(&,co&) =] €*(A,Wjfe). 

- r— ! —^—^i i coth^cofc/2) 
(51) 

Wfc 

In the derivation of Eq. (51) we have carried out a 
summation over all the directions of k. 

In order to cast Eq. (49) in the form of Eq. (2), we 
notice that the second term in the brackets of Eq. (49) 
is much smaller than one, and thus we can write 

(T (o>) « i-
eLn 

where 
m*oo+i/r(oo) 

(52) 

m*~m{l+(2e2/3irmw2) Re[F(co)]} (53) 

is the "renormalized mass" of the electrons, and 

[ r ^ ) ] " 1 - + (2<?/3rm<a) Im[F(co)] (54) 

is the frequency-dependent relaxation time. In Eqs. (53) 
and (54) Re and Im stand for the real and imaginary 
parts, respectively. We wish to point out that the 
"renormalization" of the mass is due to the phonon 
field and not due to the usual lattice effects. [These 
should be taken care of by the mass, w, on the right-
hand side of Eq. (53).] 

An interesting aspect of Eq. (54) is that even for zero 
temperature the imaginary part of F(co) [see Eq. (51)] 
does not vanish, and the resistivity is finite at high 
frequencies. This is due to the collision of the excited 
electrons with the phonon fluctuations at zero tempera­
ture. A similar effect is well known in the theory of x-ray 
diffraction in nonconducting crystals (see Peierls2). 

To conclude, we make some further simplification of 
Eq. (51), assuming the plasma model for a metal. First, 
we ignore the au in the dielectric functions, and replace 
the summation over k by integration. Thus, Eq. (51) 
reads 

2 r H 2 

F(o>) = — \dk¥ 
2TT J e2n<t>(k) 

X )J LI 1 ]coth(/3cofc/2) 

(*,0) e(k,o))\ co it 
(55) 

Next we use Eqs. (32) and (33) with <j>(k)^M/W and 
obtain 

1 1 f f 1 
F(a) = . \dkm—~ 

-K Mc J [e(k, 

1 

(*,0) €(*,«)) 

Xcoth(0ck/2), (56) 

where c is the sound velocity. Finally, we write for zero 
temperature 

1 1 r f 1 
F(o>) = IdkkH 

7T MC J U(&, (*,0) €(*,«) J 

and for temperatures above Debye temperature, 6, 

(57) 

1 2 r f 1 1 
F(u) = . UkkH — 

( l / /3»0) . (58) 

Let us examine some of the features of these results, 
which we presume are valid in general. At high fre­
quencies and low temperatures the relaxation time does 
not approach zero like T5, as in the low-frequency case, 
but rather approaches a finite value given by Eq. (57). 
For high temperatures one finds the usual T behavior, as 
may be expected on the basis of the well-known argu­
ments of the low-frequency case. The dependence on the 
ion mass, M, is different at high and low temperatures. 
While for low temperatures F(co) is proportional to 
M~m [compare with Migdal16], in the high-temperature 
case it is independent of the ion mass. 

We have calculated in the present paper only the 
contribution of the electron-photon interaction to the 
relaxation time, but the method discussed above may be 
as well applied to the impurities contribution in metals. 
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